
A New Rendering Model for X

Keith Pakard

XFree86 Core Team, SuSE In.

keithp�suse.om

Abstrat

X version 11 [SG92℄ was originally designed and

implemented in 1987. In the intervening 13 years,

there have been advanements in both appliations

and hardware, but the ore of the X Window Sys-

tem has remained largely unhanged. The last ma-

jor X server arhiteture hanges were inluded in

X11R4. The last wide-spread funtional enhane-

ment exported by the X server might well be the

Shape extension [Pa89℄, designed (in the hot tub)

at the 1989 Winter Usenix in San Diego.

The rise of inexpensive Unix desktop systems in

the last ouple of years has led to the development

of new user-interfae libraries, whih are not well

served by the existing X rendering model. A new

2D rendering model is being developed to serve this

new ommunity of appliations. The problem spae

and proposed solutions are disussed.

1 Introdution

While a window system is more than a olletion

of rendering routines, the available rendering primi-

tives onstrain the apabilities of appliations more

than anything else. The X rendering model was de-

veloped to math the abilities of workstation hard-

ware developed �fteen years ago and has signi�-

ant limitations when applied to appliation devel-

opment today.

As appliation development has advaned, the X

protool has devolved into little more than an image

transport mehanism. Appliations perform render-

ing in lient-side bu�ers and transport the result to

the sreen. A shared memory mehanism for deliv-

ering images to the X server exists when the appli-

ation is running on the same mahine as the dis-

play, but performane su�ers when attempting to

run these appliations over the network.

Many new graphis aelerators are providing ael-

eration for operations needed by new appliations.

Only by moving these operations into the X server

an this aeleration be made aessible to X appli-

ations.

2 Origins of X Rendering

A ombination of arhaeology and history is needed

to understand the urrent state of X rendering teh-

nology. Cast your mind bak to 1987, and try to

remember graphial workstations of that era. A 1

MIPS mahine was the state of the art and one was

luky to have olor on the desktop. Color, of ourse,

was 8 bits with a palette. Those hotheads over at

SGI were making noises about true olor hardware,

but for most that was not even a dream. Hardware

aeleration was available, but frequently no faster

than software, and a huge pain to ode for.

The state of the art in 2D rendering was PostSript

[Ado85℄. The de�nition of objets by preise mathe-

matial formulae was ompellingly beautiful to engi-

neers. PostSript provided sophistiated font teh-

nology embedded inside the printers of the era, but

left the desktop with only bitmap versions of the

same fonts.

Into this stepped a group of networking protool

and hardware hakers intent on updating their latest

o�ering, the X Window System. Not a single one of

them had even been introdued to a omputational

geometer, nor did they have the resoures of the

modern internet to help with the design. Of ourse

a onstant refrain was to get the darn thing �nished

and out the door. Digital, who was funding the

sample implementation, had produt shedules to



meet. Meanwhile, bak at MIT, Projet Athena was

deploying more and more X10 boxes.

So they piked up the PostSript \Red Book" and

started writing a spei�ation. Of ourse their new

window system was extensible; with any luk, lim-

itations in the original design would be masked by

lever add-ons in the future. What they failed to re-

alize was that the Red Book inadequately desribed

the atual implementation of some primitives. The

developers also laked foresight about how diÆult

it would be to reate onsensus around future ren-

dering standards.

One big limitation of PostSript in that era was in

image manipulation. Printers were blak-and-white,

so PostSript didn't need any omplex image om-

positing operators. Besides, X was an interative

protool: alpha blending a full-sreen image looked

like slugs raing down the monitor.

And then there were lumpy lines. The Red Book

desribes a beautifully pure line stroking algorithm:

a irular pen is dragged along the path and illu-

minates pixels within the irle. Too bad that the

results look ugly|the apparent width of the line

varies along the length of the line. Laking un-

derstanding of the problem, Adobe kludged around

it. John Hobby had reently solved the problem

[Hob85℄, but his solution had not yet been published

outside of Stanford and was not disovered by the

X ommunity for several years.

Instead of providing PostSript paths, X provided

only straight lines and axis-aligned ellipses. Why

axis-aligned? Beause there was a rumor that the

rendering algorithm for thin non-axis aligned el-

lipses was patented and there was agreement that

X should be free of patented tehnologies. This ru-

mor was unfounded; the algorithm (published many

years ago [Pit67℄) was unenumbered.

At one meeting, members of the X11 team looked

around the table and disovered that not one of

them had any lue about splines. Instead of do-

ing something wrong, they left them out. Sub-pixel

positioning was deemed an extravagant use of net-

work bandwidth, sine it would double the payload

of eah rendering primitive by requiring the use of

32 bits for eah oordinate instead of 16.

The expetation was that these issues ould be left

for future development in the form of an extension.

However, the usage of X expanded and ompatibil-

ity between X servers was deemed a market nees-

sity. Creating an extension that existed in only some

X servers would reate appliation interoperability

problems. Thus the rendering model has stagnated.

2.1 Problems with the Core Protool

Even ignoring new rendering tehniques, the ore

protool rendering arhiteture has some fundamen-

tal problems:

Lak of a steniling operator

X10 provided a steniling operator for solid �lls,

even this operator is missing from X11. A sten-

il an be emulated using a ClipMask, but the

sample implementation of ClipMasks is ineÆ-

ient, making this impratial.

Steniling an be used to aelerate missing

rendering primitives, the appliation generates

the appropriate shape in a monohrome bitmap

and uses that to stenil the result to the sreen.

The implementors of the sample server knew

this and inluded a steniling operator inside

the server for use by higher level primitives.

Separation of lines and ars

As useless as axis-aligned ars are, they are

made even less useful by being separated from

lines. This means there is no way to join a se-

quene of lines and ars together. As a speial

ase, zero width/height ars are de�ned to be

equivalent to lines, making it possible to render

an axis-aligned rounded retangle.

No vertial esapement for text

This is all that is needed to render Asian text

and to allow for rotated fonts.

2.2 Features of the Core Protool

In building a new rendering system, it would be un-

wise to ignore the best parts of the existing system:

Preise pixelization

Eah X operator, with the exeption of thin

primitives, has exatly spei�ed pixelization re-

quirements. This not only allows for repro-

duible rendering aross X server implementa-

tions, but probably more importantly allows for



automated testing of the rendering ode. The

rules themselves may be broken, but their ex-

istene is of vital importane.

Pixel values, not olors

Providing an underlying pixel value basis for

the rendering system allows for the implemen-

tation of a olor-based system in user spae.

The reverse is not true. Additionally, the only

way to make boolean pixel operators usable by

appliations is to expose the pixel values.

Allow all rendering permutations

X allows appliations to render stippled text us-

ing a variety of raster-ops (suh as XOR). Suh

ombinations work with all primitives other

than ImageText. This makes it possible to

dither everything on the sreen in a onsistent

manner or to apply a reversible XOR raster-op.

3 Reasons for a New Model

The strongest argument for building a new render-

ing model is in evidene on almost every Linux ma-

hine these days. The ombination of KDE, Gnome,

and Enlightenment demonstrate that the world of

2D graphis is rapidly leaving the X Window Sys-

tem behind. These appliations use sophistiated

rendering primitives like outlined text and ubi

splines. They improve image quality with anti-

aliasing and blend images together with alpha om-

positing.

It is no longer a question of what kind of rendering

will be done. The question now is where that ren-

dering should happen. Appliations will advane,

and X must either keep up or get out of the way.

One thing working in favor of an extension today

is that many new appliations are being written us-

ing a higher-level rendering model provided by a

toolkit. Providing new X server funtionality that

mathes the rendering model in the toolkit allows

for a gradual adoption of the extension as the toolk-

its are modi�ed: the toolkits an aelerate opera-

tions using the extension when available and still

fall bak to lient-side rendering for older X servers.

4 Components of a New Rendering

System

The urrent generation of 2D appliations are sim-

ilar in their demands on the rendering system. By

analyzing existing usages and hoosing primitives

with are, a reasonably onsistent system an be

built whih will be useful for many appliations.

The existene of appliations with well-understood

requirements provides an opportunity laking in the

initial protool design.

4.1 Alpha Compositing

Alpha ompositing is the blending together of im-

ages with a per-pixel (�) value ontrolling an arith-

meti ombination of the olors. There are many

reasonable funtions for this operator. The most

ommon is a translueny operation, in whih the

olors are ombined as v = �v

1

+ (1� �)v

2

. As im-

ages are omposited with this operator, they appear

as transluent overlays on the original image.

Alpha ompositing is also useful in approximating

anti-aliasing. A suitable funtion and onstraints

on both the struture and order of the rendering

primitives an yield satisfatory results.

3D appliations make signi�ant use of alpha om-

positing, so graphis hardware now ommonly sup-

ports some of the most popular alpha ompositing

funtions of OpenGL. Giving appliations aess to

hardware ompositing will provide dramati perfor-

mane improvements.

There are many di�erent ways of presenting image

data along with alpha hannel information. At 32

bits per pixel, the alpha hannel is frequently deliv-

ered in the unused upper byte. For 16 bit images

sometimes the alpha hannel is embedded as one

of four 4-bit omponents and sometimes the alpha

hannel is in a separate 8-bit image.

For appliations to be able to take maximal advan-

tage of the available aeleration, the harateris-

tis of the hardware must be exposed to the ap-

pliation. This signi�antly ompliates the toolkit,

whih must math rendering requests with available

resoures.

1

1

Better arhitetural ideas are welome.



Alpha ompositing is easy to desribe in a TrueColor

environment, but more problemati in PseudoColor

where there is no linear relation between pixel and

olor. Fortunately, most modern mahines are able

to display in TrueColor, making it tempting to pro-

vide this funtionality only in that ase.

4.2 Anti-Aliasing

Anti-aliasing is the appliation of signal proess-

ing in rasterization. It redues the high-frequeny

quantization noise generated by impreisely posi-

tioned objet edges. Coneptually, anti-aliasing is

performed by oversampling the image and resam-

pling at the sreen resolution.

A diret approah would reate an oversampled ver-

sion of the image in memory, and resample the om-

pleted image either to the frame bu�er or (ideally)

as it is delivered to the sreen. The prospet of mul-

tiplying the amount of video memory by some large

amount and reduing rendering performane by a

similar amount have led to a searh for inexpensive

inremental approximations.

When displaying a single onvex primitive, the sim-

ple alpha ompositing operator desribed above an

be used to aurately approximate anti-aliasing. By

generating an alpha hannel ontaining the output

of the resampling �lter, the primitive an be om-

posited onto the sreen. However, when more than

one primitive is involved the task beomes more dif-

�ult, as the alignment of the edges of eah primitive

is lost in the ompositing operation.

OpenGL ontains a set of more ompliated alpha

operations, whih ameliorate the errors in this ap-

proximation when used properly. A reasonable sub-

set of these operations will be inluded in the new

system.

As mentioned above, the alpha hannel is �lled with

the output of the resampling �lter. Most existing

anti-aliasing systems simply ompute the amount of

the pixel overed by the objet and use that as the

alpha value; for the edges of a polygon, the system

has a measure of that value omputed as it walks

the edge. A more sophistiated anti-aliasing system

uses the output of a 2D �lter to �ll the alpha han-

nel. This �lter an even take into aount the re-

sponse harateristis of the eletron beam display-

ing the image: systems built with suh tehniques

work quite well.

Given that this alpha blending tehnique is only

approximate and that sophistiated tehniques are

likely to be a performane problem in the near term,

only the simple overage model is urrently planned.

Provisions will be made for adding new anti-aliasing

mehanisms in the future.

4.3 Coordinate System

The urrent rendering system uses a 16-bit integer

oordinate spae, whih is �ne for desribing ret-

angles but impreise when drawing text lines and

polygons. Sub-pixel positioning is essential when

ompositing polygons into larger shapes, to avoid

visible disontinuities along edges.

Sub-pixel positioning allows appliations to more

preisely position objets on the sreen. To ren-

der an objet using the ore protool, the oordi-

nates must be rounded to the nearest pixel bound-

ary. This mispositions the objet by as muh as 1/2

pixel. While this may not seem serious, the umu-

lative visual e�et of many 1/2 pixel errors is quite

notieable. Sott Nelson desribes this problem in

more detail [Nel96℄, inluding an example showing

the improvement o�ered by sub-pixel positions even

in the absene of anti-aliasing.

One obvious oordinate representation is IEEE 32-

bit oating point numbers. The 24 bit mantissa

spei�ed by IEEE would provide at least 8 bits of

sub-pixel position within the 16-bit X oordinate

spae, and would be easy for appliations to man-

age.

However, it is desirable for objets to be transla-

tionally invariant. As objets move to larger oor-

dinates, IEEE oats will slowly drop bits of sub-

pixel position information. This is espeially im-

portant as windows move around the sreen. While

IEEE oats ould probably be made to work by ar-

ti�ially limiting their preision for smaller values,

using �xed-point numbers eliminates this problem

entirely.

The next question is how many bits of fration to

use. Four is enough for most appliations, but eight

will suÆe for all but the most partiular uses. Ap-

pliations whih use larger oordinate spaes will

still need to perform lipping operations during the



transformation to X oordinates, but with 8-bits of

sub-pixel position, it should suÆe for most to sim-

ply trunate objets at the boundary of the X oor-

dinate spae.

For these reasons, 32-bit �xed-point oordinates

with 8 frational bits will be used.

4.4 Rendering Primitives

One thing missing from the ore protool is a sim-

ple server primitive that ould be used to render

geometrial objets not de�ned by the protool. In-

side a PostSript interpreter, the primitive used is

a horizontal trapezoid|that is, the top and bottom

edges are horizontal. LibArt, the rendering library

for the Gnome projet, uses an equivalent primitive

alled sorted edge lists.

So, at a minimum, this new primitive will be in-

luded. Unlike the ore polygon request, this re-

quest will be able to draw many trapezoids at a

time.

A question remains as to whether PostSript-style

paths should be inluded. Doing so would signi�-

antly redue the wire traÆ but would ompliate

the implementation. The paths would inlude lines,

ubi splines and harater elements.

Paths would be rasterized by raking them into

trapezoids as desribed above, using a settable error

value to desribe the polygonalization of urves. By

making this rendering mehanism expliit, it would

be possible to preisely speify pixelization of the

path in relatively simple terms, and to exatly repli-

ate this pixelization on the lient side if neessary.

4.5 Text

The original X design was done before outline ras-

terizers were used to generate sreen fonts. The only

fonts available were bitmaps, and the idea of pro-

viding saled versions of those for the sreen laked

appeal.

The resulting design does not math the realities of

outline fonts well at all. Even the XLFD spei�a-

tion (and its extensions to support salable fonts,

font subsetting, and glyph rotation) is diÆult or

impossible to use with outlined fonts.

One problem to be solved is in the naming and

aessing of fonts. A simple mehanism ould be

added to provide more ontrol over whih font is se-

leted, and to provide more than a simple string to

identify fonts. Another issue is aess to additional

metris about the font, suh as pair kerning tables,

glyph names, and more preise glyph metris.

A requirement for modern appliations is that the

appliation and the X server share aess to the raw

outline data and metris. This allows the applia-

tion to augment the text rendering provided by the

X server with fanier versions on the lient side. An

easy way to provide this is to extend the X Font

Servies Protool [Ful94℄ to inlude this additional

information.

Another issue with the ore protool is in aess-

ing glyph metris. The ore protool provides only

the QueryFont request whih retrieves metris for

all glyphs in a font at one. This allows the lient

to quikly ompute the extents for any set of glyphs

without onsulting the server in the future. How-

ever, it also requires that the metris for every glyph

in the font be available when the request is made.

For salable fonts, this means that the entire font

must be rasterized; for most salable tehnologies,

generating X metris is a side e�et of rasterizing

glyphs.

Most appliations issue a QueryFont for eah font

that they open, this means that in normal usage, the

X server rasterizes every glyph in every font used by

appliations.

Additionally, the ListFontsWithInfo request returns

bounding metris for all glyphs in the font. Com-

puting the bounding metris requires the omplete

set of metris for the font.

New font information requests are needed. A re-

quest to query the metris for a list of glyphs along

with a new font listing funtion whih provides as

muh information about the font as an be gathered

without rasterizing every glyph.

Better rendering primitives are required as well, al-

lowing for rotation of glyphs and baselines, sub-pixel

positioning, and anti-aliasing.

Diret support of glyph outlines may be addressed

at some point. This is somewhat diÆult given the

multipliity of outline font formats, the lak of high-

quality Type1 rasterizers and the additional render-



ing infrastruture required.

5 Strategy

Building a new rendering system will take some

time, and feedbak during the proess is essential

to make it suessful. To make this possible, the

system will be developed in stages, with eah stage

building on the previous stages. Some enhane-

ments will be available soon, while others wait both

for resoures to implement them and for onsensus

to be built supporting the partiular design.

1. Alpha Compositing

Many appliations need this today but are suf-

fering with unaelerated lient-side implemen-

tations. This is an operation that graphis

hardware an improve by a huge amount, form-

ing the basis for anti-aliased graphis.

2. Trapezoids

Moving these primitives to the server will re-

due the demands plaed on the bus between

the CPU and the graphis adapter.

3. Paths

Moving these into the server will redue wire

traÆ, but not provide any dramati perfor-

mane improvements exept in a networked en-

vironment.

5. Font Information

Reduing the work required to open and list

fonts will improve the ability of the system to

ope with the inreasing availability of outline

and 16-bit fonts.

4. Font Aess

Improving the mehanisms by whih the X

server and appliation share aess to the same

fonts will allow for improvements in manage-

ment and deployment of appliations, espe-

ially in a omplex networked environment.

5. Text Rendering

Adding the ability to display outline fonts with

the option of anti-aliasing has been on the

\wish list" for a long time.

Eah of these systems will be implemented �rst in

software, and then hardware aeleration will be

provided for some ommon graphis hips. Where

possible, existing graphis systems an be used to

avoid a dupliation of e�ort. In partiular, OpenGL

will make this task easier for hips whih have ap-

propriate support in plae.

6 Conlusion

The existing X rendering model was rushed to om-

pletion by people who understood their limitations

and expeted it to be quikly augmented with suit-

able extensions. No redible 2D graphis extensions

have been developed in the intervening 13 years, but

the world has reently hanged. The advent of new

toolkits that provide advaned rendering models ab-

strated from the ore protool opens a new oppor-

tunity to improve the X Window System. A new

rendering model, designed to solve spei� perfor-

mane and network transpareny issues of these new

toolkits, has the promise of signi�antly inreasing

the power of the X desktop environment.

Referenes

[Ado85℄ Adobe Systems Inorporated. PostSript

Language Referene Manual. AddisonWes-

ley, 1985.

[Ful94℄ Jim Fulton. The x font servie protool. X

onsortium standard, Network Computing

Devies, In., 1994.

[Hob85℄ John D. Hobby. Digitized Brush Trajeto-

ries. PhD thesis, Stanford University, 1985.

Also Stanford Report STAN-CS-85-1070.

[Nel96℄ Sott R. Nelson. Twelve harateristis of

orret antialiased lines. Journal of Graph-

is Tools, 1(4):1{20, 1996.

[Pa89℄ Keith Pakard. X nonretangular window

shape extension protool. X onsortium

standard, MIT X Consortium, 1989.

[Pit67℄ M. L. V. Pitteway. Algorithm for drawing

ellipses or hyperbolae with a digital plot-

ter. The Computer Journal, 10(3):282{289,

November 1967.

[SG92℄ Robert W. Sheier and James Gettys. X

Window System. Digital Press, third edi-

tion, 1992.


