
picolibc
A C Library for Smaller Systems

Keith Packard
Principal Engineer

SiFive
keith.packard@sifive.com

Embedded Libc Needs
● Math Functions

– Often for soft-float processors
● String Functions

– Ideally accelerated for architecture
● Stdio

– Largely for debugging

Small System Constraints
● Small Memory

– RAM is more constrained than ROM
● No heap

– malloc can easily fail
● Limited floating point

– May have only 32-bit floats
– May have none at all

Current 32-bit Libc Options
● newlib and newlib-nano

– Designed for systems with an OS
– libgloss wraps OS functions for newlib
– stdio is fast, but malloc-intensive

● various proprietary options
– closed source
– unable to fix

“Fixing” newlib
● Replace stdio

– Must not malloc
– Should use as little RAM as possible
– Retain full C semantics

● Discard libgloss
– No value here for bare-metal systems

picolibc
● newlib math, i18n, strings

– good performance, wide support
● stdio adapted from AVR libc

– FILE takes just 20 bytes of RAM

stdio

● Added flush to allow for buffering
● Picolibc includes POSIX layer

– requires read/write/lseek/open/close

struct __file {
unsigned char unget; /* ungetc() buffer */
uint8_t flags; /* flags, see below */
int len; /* characters read or written so far */
int (*put)(char, struct __file *); /* function to write one char to device */
int (*get)(struct __file *); /* function to read one char from device */
int (*flush)(struct __file *); /* function to flush output to device */

};

printf & scanf
● float code takes a lot of space

– can also drag in soft float & double code
● offer “int-only” and “float-only”

versions
– -DPICOLIBC_INTEGER_PRINTF_SCANF
– -DPICOLIBC_FLOAT_PRINTF_SCANF

Using the float printf code
 #define PICOLIBC_FLOAT_PRINTF_SCANF
 #include <stdio.h>

 int main(void)
 {
 printf("%g\n", printf_float(355.0f/113.0f));
 return 0;
 }

Comparing sizes (soft float)
$ size a*.out

 text data bss dec hex filename
 2242 28 2 2272 8e0 a-int.out
 7920 28 2 7950 1f0e a-float.out
 12904 28 2 12934 3286 a.out

Thread Local Storage
● TLS instead of 'struct reent'
● Linker limits TLS space to in-use vars
● RISC-V TLS support is excellent

– Dedicated TLS base register
● Add API to set TLS base

– To be used by an OS for thread switching
● Initial static TLS area setup by linker

crt0 and linker script
● Provide defaults for simple applications

– User specifies RAM/ROM memories
● Allows configure tests to succeed

– gcc hello-world.c
● Demonstrates requirements for more

advanced users

semihosting
● Interface to host OS via debugger or QEMU

– RISC-V version adapted from ARM version
● Console and file I/O

– Printf debugging even before clocks are running
● _exit

– Passes exit status through qemu
● RISC-V QEMU patches awaiting merge

– QEMU just released 4.2.0

Testing
● newlib includes over 74000 tests

– Thousands (and thousands!) fail
– Not obviously used in decades

● picolibc has fixed these
– All pass on RISC-V, ARM and x86 today
– Testing 30 RISC-V combinations, along

with ARM Cortex M3

hello-world.c
 #include <stdio.h>

 int main(void)
 {
 printf("hello, world\n");
 return 0;
 }

Compiling
 riscv64-unknown-elf-gcc

 -specs=picolibc.specs
 -march=rv32imac
 -mabi=ilp32
 -Thello-world.ld
 --oslib=semihost
 hello-world.c

Linker Script
 __flash = 0x80000000;
 __flash_size = 0x00080000;
 __ram = 0x80080000;
 __ram_size = 0x00040000;
 __stack_size = 1k;

 INCLUDE picolibc.ld

Size
 $ size a.out
 text data bss dec hex filename
 894 28 2 924 39c a.out

Running
 qemu-system-riscv32

 -chardev stdio,id=stdio0
 -semihosting-config enable=on,chardev=stdio0
 -monitor none
 -serial none
 -machine spike,accel=tcg
 -cpu sifive-e31
 -kernel a.out
 -nographic

Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

